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Abstract. The extended Omont-Ueda-Kaulakys treatment of collisional effects on quasi-Rydberg states,
in which the perturbation of the lower state is taken into account is applied to thallium-rare gas sys-
tems. The pressure broadening and shift coefficients of two-photon transitions in thallium involving the
6P1/2−n P1/2,3/2 (n = 9–14) states are calculated and compared with experimental data obtained by
Hermann et al. [Eur. Phys. J. D 1, 129 (1998)].

PACS. 32.70.-n Intensities and shapes of atomic spectral lines – 31.50.+w Excited states –
34.20.-b Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions

1 Introduction

Pressure effects on optical lines originating from highly ex-
cited levels of alkali-metal and rare-gas atoms perturbed
by ground-state atoms continue to be the subject of nu-
merous investigations [1–10]. Theoretical calculations of
collisional widths and shift of such spectral lines were per-
formed using a theory developed by Omont [11], Kaulakys
[12] and Ueda [13] (hereafter referred to as OKU) which is
based on the famous Fermi model [14] of Rydberg atom-
normal atom interaction. According to Fermi, for suffi-
ciently large values of the principal quantum number n,
there are two factors responsible for the collisional broad-
ening and shift of corresponding spectral lines. The first
factor is the scattering of the radiating atom electron
(treated as the quasi-free “Rydberg” electron) on the per-
turbing atom and the second factor is the effect of polar-
ization of the perturbing atom due to the ionic core of the
radiating atom. Assuming that the perturbers move along
classical paths (straight lines), Omont [11] Kaulakys [12]
and Ueda [13] have adapted the Fermi model to calculate
the width and shift parameters in the framework of the im-
pact theory of pressure broadening which yields the line
shape in the form of a Lorentzian distribution with half-
width γ and shift ∆ linearly dependent on the number
density N of perturbing atoms. In the OKU treatment,
the width and shift parameters are given by simple ana-
lytic formulae expressed in terms of the electron scattering
length L of the perturbing atom as well as its polarizabil-
ity α and the effective quantum number n∗ of the radiat-
ing atom. An essential assumption in the OKU treatment
is that the broadening and shift are entirely determined
by the perturbation of the upper state of the radiating
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atom so that the perturbation of the lower state can be
ignored. This assumption restricts the applicability of the
OKU theory to optical lines of “true” Rydberg atoms, i.e.
those corresponding to the transitions between highly ex-
cited Rydberg states characterized by very high values n∗

of the effective quantum number and the low-lying states.
Collisional effects on spectral lines originating from

“quasi-Rydberg” states, i.e. the excited states correspond-
ing to the intermediate region of n∗-values, are also of
considerable interest but not many of them have been
studied in detail. Such effects have been the subject of
recent experimental study from this laboratory on the
2p5ns−2p53p (n = 5–7) transitions in neon perturbed
either by He or Ne [8] as well as on the 3p5np−3p54s,
3p5ns−3p54p and 3p5nd−3p54p (n = 4–9) transitions in
argon perturbed by He or by Ne or by Ar [10,15–21]. Re-
sults of that study indicate that in some cases they can
be qualitatively explained on the basis of the OKU treat-
ment. It was found, however, that in general case the OKU
treatment fails for the intermediate region states, first of
all in case of perturbation of both the neon and argon spec-
tral lines involving d-states. In an earlier paper, Trawiński
and Bielski [22] have shown that one of the reasons of the
failure of the OKU model for the intermediate n∗-region
is the neglect of perturbation of the lower state in the
radiating atom. Starting from the general formula of the
impact theory for the width and shift they have extended
the OKU treatment (hereafter referred to as ExOKU) by
taking into account the perturbation of the lower state
as well as the anisotropy of the electron-perturber inter-
action. The main advantage of the ExOKU treatment is
that it is free of the shortcomings of the conventional OKU
treatment such as those connected with some discontinu-
ities at the borders between various n∗-intervals. In order
to test the applicability of the ExOKU treatment for the
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description of collisional effects for the intermediate n∗-
region, Trawiński and Bielski [22] have used it to calcu-
late the broadening and shift coefficients of many spectral
lines of neon corresponding to the 2p5nd−2p53p (n = 3–
7), 2p5ns−2p53p (n = 5–7) transitions perturbed by He
and Ne for which the experimental values of the width
and shift are known with a great experimental accuracy.
It was found that although the agreement with experi-
ment was not satisfactory in all cases, the ExOKU model
reproduced well the general features of the n∗-dependence
of the broadening coefficients both for Ne–Ne and
Ne–He. The ExOUK model was also applied in calcula-
tions of the width and shift coefficients of the argon spec-
tral lines corresponding to the 3p5ns−3p54p (n = 6–9)
and 3p5nd−3p54p (n = 4–8) transitions in the Ar-atom
perturbed by the He-, Ne- and Ar-ground state atoms
[27]. All these lines correspond to the intermediate n∗-
region and were the subject of very precise interferometric
line profile analysis done in our laboratory in recent years
[10,15–21].

In a recent paper Hermann et al. [26] reported results
of their broadening and shift measurements of Doppler-
free two-photon lines corresponding to the transitions
from the ground state 6 P1/2 to n P1/2 and n P3/2 quasi-
Rydberg (n = 9–14) states of thallium perturbed by rare-
gas atoms.

They interpreted their experimental results on the ba-
sis of the Kaulakys version [12] of the OUK treatment in
which the perturbation of the 6 P1/2 state is neglected. In
the present work an alternative interpretation of exper-
imental results of Hermann et al. [26] is given using the
extended OKU (ExOKU) model. In our interpretation the
perturbation of the 6 P1/2 state is taken into account as-
suming the van der Waals potential.

2 Theoretical background

Extensive experimental studies of profiles of many spectral
lines have shown that at low pressures of the perturbing
gases the collisional component of the total profile may be
fitted well to the Lorentzian profile

I(ω) =
Nβ

2π

1

(ω − ω0 −Nδ)2 + (Nβ/2)2
· (1)

Here β = γ/N is the pressure broadening coefficient
which characterizes the total Lorentzian half-width γ, and
δ = ∆/N is the pressure shift coefficient which determines
the shift ∆ of the maximum of the line with respect to
the unperturbed frequency ω0. According to the classical
phase-shift theory the thermally-averaged broadening (β)
and shift (δ) coefficients can be calculated from the for-
mulae

β

2
− iδ = 2π

∫ ∞
0

dv f(v)v

×

∫ ∞
0

dρ ρ{1− exp[iη(ρ, v)− iη̃(ρ, v)]} (2)

where f(v) is the Maxwellian distribution of velocities.
In these expressions η(ρ, v) and η̃(ρ, v) denote the phase
shifts in the upper and lower state of the radiating atom,
respectively, caused by a single collision occurring at im-
pact parameter ρ and relative velocity v. Assuming that
the perturber follows a straight-line trajectory η(ρ, v) can
be written as

η(ρ, v) =
2

v~

∫ ∞
ρ

dR
RV (R)√
R2 − ρ2

(3)

where V (R) is the interaction potential describing the in-
teraction between the perturber and the radiating atom
in its upper state. The lower state phase-shift η̃(ρ, v) can
be calculated from the formula identical to equation (3)

with the replacement of V (R) by Ṽ (R). In the conven-
tional OKU treatment the phase shifts η̃(ρ, v) caused by
the perturbation of the lower state in the radiating atom
are ignored and the integrals in equation (2) are evaluated
using an approximation due to Anderson [23]. On the con-
trary in the ExOUK treatment both η(ρ, v) and η̃(ρ, v)
are taken into account, the Anderson approximation is
not applied and the integrals over the impact parameters
ρ are evaluated numerically without any simplifying as-
sumptions.

Following Fermi [14] and Omont [11] the radius rB =
(n∗)2 of the Bohr orbit of an optical quasi-Rydberg elec-
tron can be used as a parameter which determines the
border between two regions of the radiator-perturber in-
teraction. In the first region (0 < ρ < rB) which cor-
responds to flights of a perturber “inside” the Bohr or-
bit the interaction potential may be approximated by the
sum of Fermi potential VF describing the optical electron-
perturber interaction and the polarization potential VP
for the ionic core-perturber interaction. The phase shift
η(ρ, v) (or η̃(ρ, v)) is then the sum [12,13]

η(ρ, v) = ηF (ρ, v) + ηP (ρ, v), (4)

where

ηF (ρ, v) =
L

2v(n∗)3√ρ
(5)

is the phase-shift corresponding to the Fermi potential,
expressed in terms of the electron-perturber scattering
length L, and

ηP (ρ, v) = −
πα

4vρ3
(6)

is the phase shift caused by the polarization interaction
with α being the dipole polarizability of the perturber.

In the second region (ρ > rB) corresponding to the
flights of the perturber outside the Bohr orbit the ionic
core is screened by the optical electron so that the polar-
ization interaction may be neglected. Following Kaulakys
[12] and Ueda [13] for rB < ρ < 2rB the phase shift
η(ρ, v) (or η̃(ρ, v)) is assumed to be pure Fermi shift:
η(ρ, v) = ηF (ρ, v).

For ρ > 2rB = 2(n∗)2 the perturbers are moving far
enough from the radiating atom so that both the electron
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scattering and polarization effects can be omitted. In this
region the emitter and perturber can be treated as two
separated neutral particles, and their interaction may be
approximated by the van der Waals potential VvdW (R) =
−C6R

−6.

3 Broadening and shift in the thallium
spectrum

We have used formulae described in Section 2 to calcu-
late the broadening (β) and shift (δ) coefficients for two-
photon transitions Tl 6 P1/2−n P1/2, 3/2 (n = 9–14) per-
turbed by He, Ne, Ar, Kr and Xe studied experimentally
by Hermann et al. [26]. In our calculations we used the
same values of scattering lengths L and polarizabilities α
as used by Hermann et al. [26]. The van der Waals force
constants C6 were computed using the approximate for-
mula given by Unsöld [24] (see also [25]).

It should be emphasized that equation (2) for β and
δ is valid for isotropic potentials only. Hereafter, values
of β and δ calculated for isotropic potentials from equa-
tions (2–6) will be denoted by β(α,L) and δ(α,L), re-
spectively. In general case, the interaction is essentially
anisotropic so that the different potential curves corre-
sponding to various orientations of the angular momenta
of the colliding atom with respect to the internuclear axis
have to be taken into account. A method of calculation
of the broadening and shift coefficients which takes into
account the anisotropy of the Fermi potential was pro-
posed by Hermann et al. [6]. Collisional broadening (β)
and shift (δ) coefficients corresponding to transitions into
upper levels with angular momentum J ≥ 1 are related
with the β(α,L) and δ(α,L) coefficients given by equa-
tion (2) for the isotropic part of the Fermi potential in the
following way. For spectral lines involving P1/2 states we
have [6,26]

β(P1/2) = β(α,L), (7)

δ(P1/2) = δ(α,L). (8)

In Figure 1 the theoretical values of the pressure broaden-
ing (β) and shift (δ) coefficients of thallium 6 P1/2−n P1/2

(n = 9–14) lines perturbed by He, Ne, Ar, Kr and Xe com-
puted from the ExOUK treatment (Eqs. (2, 7, 8)) are plot-
ted against the effective number n∗ and compared with
experimental values of Hermann et al. [26].

The values of the pressure broadening (β) and shift
(δ) coefficients calculated from the Kaulakys version of
the conventional OUK treatment presented in paper [26]
are also plotted in Figure 1.

As can be seen the broadening coefficients (β) calcu-
lated from the ExOUK treatment for Tl–He, Tl–Ne and
Tl–Xe systems are in better agreement with experiment
than those resulting from the conventional OUK model.

For the line shift coefficients (δ) for Tl–Ne system
only the Kaulakys model gives rise to a better agreement
with experiment than the ExOUK treatment. It should be
noted, however, that the ExOUK treatment predicts a red

shift (δ < 0) for n∗ between 2.0 and 2.5 which agrees with
the experimental result obtained for the 6 P1/2−7 P1/2 [2]
transition. We should also note that conventional OUK
model is unrealistic for smaller n∗ as it predicts no shift
for n∗ < 6.2 for Tl–Ar, n∗ < 8.2 for Tl–Kr and n∗ < 9.9
for Tl–Xe system.

For spectral lines associated with P3/2 states the
broadening β(P3/2) and shift δ(P3/2) coefficients are
given by

β(P3/2) =
1

2

[
β

(
α,

1

2
L

)
+ β

(
α,

3

2
L

)]
, (9)

δ(P3/2) =
1

2

[
δ

(
α,

1

2
L

)
+ δ

(
α,

3

2
L

)]
. (10)

In Figure 2 the theoretical values of the pressure
broadening (β) and shift (δ) coefficients of thallium 6
P1/2−n P3/2 (n = 9−14) lines perturbed by He, Ne,
Ar, Kr and Xe computed from the ExOUK treatment
(Eqs. (2, 9, 10)) are plotted against the effective number
n∗ and compared with experimental [26] values.

The values of the pressure broadening (β) and shift
(δ) coefficients calculated from the Kaulakys version of
the conventional OUK treatment presented in paper [26]
are also plotted in Figure 2. As it can be seen, also for
the P1/2−P3/2 transitions the broadening coefficients (β)
calculated from the ExOUK treatment for Tl–He, Tl–Ne,
Tl–Kr and Tl–Xe systems are in better agreement with ex-
periment than those resulting from the conventional OUK
model.

For the line shift coefficients (δ) for Tl–Ne system only
the Kaulakys model yields a better agreement with exper-
iment than the ExOUK treatment. It should be noted that
conventional OUK model is unrealistic for smaller n∗ as
it predicts no shift for n∗ < 6.2 for Tl–Ar, n∗ < 8.2 for
Tl–Kr and n∗ < 9.9 for Tl–Xe system.

4 Concluding remarks

In the course of the present study the calculations of the
pressure broadening and shift coefficients for spectral lines
of thallium 6P1/2−n P1/2, 3/2 (n = 9−14) have been per-
formed on the basis of the ExOKU treatment. It was
shown that the ExOKU treatment reproduces the general
features of the n∗-dependence of the pressure broadening
(β) coefficient for Tl-rare gas systems. For the line shifts
caused by heavier (Ar, Kr, Xe) perturbers the theoretical
values of the pressure shift coefficients (δ) calculated in
the framework of the ExOUK treatment are in reasonable
(or even good) agreement with experiment [26], while the
conventional OUK treatment predicts no shift for small
n∗. We should emphasize that in the case of Tl–Ne sys-
tem our theoretical shift coefficients are smaller than the
experimental ones. Finally, we conclude that in order to
explain all experimental data on pressure broadening and
shift of the thallium spectral lines involving quasi-Rydberg
states the theoretical potentials more realistic than those
used in the present work should first be found.
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Fig. 1. Comparison of theoretical values of the pressure broadening (β) and shift (δ) coefficients of thallium 6 P1/2−n P1/2 (n =
9−14) lines perturbed by He, Ne, Ar, Kr and Xe computed from the ExOUK (solid line) and Kaulakys (dashed line) treatments
plotted against the effective number n∗ with the experimental values of Hermann et al. [26].
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Fig. 2. Same caption as in Figure 1, but for the set of lines 6 P1/2−n P3/2 (n = 9−14).
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